US009367690B2

a2 United States Patent

US 9,367,690 B2
Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

Lin et al.
(54) ENCRYPTION AND DECRYPTION
METHODS APPLIED ON OPERATING
SYSTEM
(71) Applicant: MOXA INC., New Taipei (TW)
(72) Inventors: Shang-Jyh Lin, New Taipei (TW);
Cheng-Tao Hsu, New Taipei (TW)

(73) Assignee: MOXA Inc., New Taipei (TW)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 238 days.

(21) Appl. No.: 14/320,668

(22) Filed: Jul. 1, 2014

(65) Prior Publication Data
US 2016/0004866 Al Jan. 7, 2016

(51) Imt.ClL
GO6F 15/177 (2006.01)

GO6F 21/57 (2013.01)
HO4L 9/06 (2006.01)
GO6F 21/62 (2013.01)
GOGF 9/44 (2006.01)

(52) US.CL

CPC GO6F 21/575 (2013.01); GO6F 21/6281
(2013.01); HO4L 9/0643 (2013.01); GO6F
9/4401 (2013.01)

(58) Field of Classification Search
CPC .. GO6F 21/575; GOG6F 21/6281; HO4L 9/0643
USPC
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
5,414,771 A * 5/1995 Fawecett, Jr. HOA4L 9/0662
380/44
6,801,588 B1* 10/2004 Yamaguchi HO3M 7/4006
375/232
8,347,070 B1* 1/2013 Bacha GOG6F 9/4401
713/2
8,364,965 B2* 1/2013 Farrugia GO6F 21/64
713/161
2001/0042005 Al* 11/2001 McClure GO07C 13/00
705/12
2003/0188179 Al* 10/2003 Challener GO6F 21/57
713/193

2006/0179483 Al* 82006 ROZasco..... GO6F 21/57
726/22
2007/0198851 Al* 82007 GOtO ..ooevvvervrnnnen GO6F 12/145
713/187
2008/0229114 Al* 9/2008 Okabe GO6F 21/57
713/189
2009/0144559 Al* 6/2009 Lee .oovvevvrrvrnnnnn GO6F 21/575
713/189
2010/0131476 Al* 5/2010 Kataoka GO6F 17/30979
707/693
2011/0064217 ALl* 3/2011 Fry .coovcvnevnenn GO6F 21/78
380/46
2011/0084858 Al* 4/2011 Suzukicocev. HO4N 19/91
341/67
2011/0286599 Al* 11/2011 Tuyls ...cooevvennnnee GO6F 21/602
380/278

2012/0331307 Al* 12/2012 Fernandez
Gutierrez GOGF 21/72
713/190
2013/0132725 Al* 5/2013 Pochon HO4L 63/0485
713/171
2013/0198198 Al* 8/2013 Tsuchimoto GO6F 17/30321
707/741
2014/0256419 Al* 9/2014 Laputz GO7F 17/3241
463/29
2015/0012738 Al* 1/2015 Shahcccccoevrnnn. GO6F 21/575
713/2

* cited by examiner

Primary Examiner — Thomas Lee

Assistant Examiner — Volvick Derose

(74) Attorney, Agent, or Firm — Chih Feng Yeh; Huntington
IP Consulting Co., Ltd.

(57) ABSTRACT

An encryption and decryption methods applied on an operat-
ing system kernel are disclosed, where a hash result is
obtained from a computation between a booting program and
the operating system kernel by using a definition table, the
computation result is combined with the operating system
kernel for encryption of the operating system kernel, and the
operating system kernel may not be decrypted and thus
booted whenever the booting program, the operating system
kernel or the two combined are falsified or replaced, whereby
the technical efficacy which the booting program and the
operating system kernel are authenticated bilaterally for
safety booting may be achieved.

14 Claims, 5 Drawing Sheets

pre-establishing a definition table in the booting program, the definition table having codes stored

therein

}/ 101

!

selecting randomly a plurality of codes from the definition table by the booting program and recording f 102
the plurality of codes having been selected by the booting program when the booting program is
executed at a first time

looking for at least one booting bit value set each having a plurality of booting bit values from the
booting program in a storage space by the booting program according to the selected plurality of codes, 103

and looking for at least one kernel bit value set each having a plurality of kernel bit value from the f

operating system kemel in the storage space by the booting program and a position of each of the
plurality of kernel bit values in the kernel bit value set corresponding thereto, the booting bit value sets

corresponding to the kernel bit value sets

computing a reversible hash function to each of the plurality of booting bit values of the booting bit
value set and one of the plurality of kermel bit values of the kernel bit value set corresponding thereto
by the booting program, to obtain a hash value corresponding thereto, respectively

f104

replacing each of the plurality of kernel bit values of the kernel bit value set at the position of each of
the plurality of kernel bit values of the kernel bit value set with the hash value corresponding thereto by f 105
the booting program, respectively, and saving the kernel bit value set with the hash value replaced as
the operating system kemnel, to encrypt the operating system kernel, the encrypted operating system
kernel being not executable

US 9,367,690 B2

Sheet 1 of 5

Jun. 14, 2016

U.S. Patent

1 "DId

SOI1 \

9]qBINJAX? 10U JUIdq [oUIdY
wo)sAs Juneiado paydArous oy ‘[ouray wAIsAs unerado o 1dAI0UL 0] ‘[ouIay WRlsAS Funeiado ayp
se paoedar anjea ysey ay) YIm Jas anjea 11q [OWIoy oY1 Suraes pue ‘Apanoadsar ‘weirdord Sunooq ayp
Aq 0101911 Surpuodsariod anjeA YSey oY} I 1S AN[BA JIq [OUISY JY) JO SAN[BA 11q [duIay Jo Arjenyd sy
JO ora Jo monisod a1 e 19S ANTRA 1Iq [SUISY 3} JO SaNJeA 11q [SwIay] Jo Apeand oy Jo yoes Surorjdax

%

01 \

A2An0adsal ‘o1a10y) Suipuodsariod anjea ysey e ulejqo o1 ‘wetdold 3unooq ayy Aq
01210y} Sulpuodsalioo 39S aNJBA 11q [UIY Oy} JO SANJBA 11q [SULoy JO Aijein|d oy3 JO U0 pueE 19s AN[eA
11q 3unooq ay Jo senyeaA 31q Junooq jo Arreinyd ay) Jo YoB 03 UONOUN] YSEY 2qISIoAdl B Sunndwod

%

€0l \

135 QM[BA JIq [SUIY Y} 0} SuIpuOdsaLIOd
S19S anjeA 11q 3UR00q Y} ‘0321aY) SUIPUOdSaLIOD 39S ON[BA 1Iq [QUIY Y} UI SAN[BA 11q [dUIdY JO Anen|d
oy Jo yoea Jo uonisod & pue weidord Funooq ay) Aq 2oeds 93eI0)S A UI [SUIAY WRISAS Funeiado
9} WOJ an[eaA 31q [puaay Jo Areinyd v SuABY [ora 195 an[RA 11q [QUIdY SUO ISBI[JB 10] Surjoo[pue
‘sap09 Jo Ajeanyd pa1oares oyl 03 Surprodor weasord Sunooq oy Aq 2ords 95v101s © ur weisord Sunooq
o) WOy sanyeA 31q Sunooq Jo Apeinid © SUIARY Yors 19S anfeA 11q SuUnooq auo 1Se3| 18 10 Surjoo]

%

01 \

oWl JSIJ B JB POINISXa
s1 weigord Sunooq o) uaym weifoxd Surjooq ay) Aq Po1da[as udaq SUIARY Sopod Jo Aypeanid o
gurprooal pue weigord Funooq ay) AQ S[qer) UONIULAP AY) WOLJ SAP0J Jo AJfein(d © AJWiopueI SUnd9[os

%

101 \

U019y}
Pa101s SOPOd FuIARY O[qR) UONIULFop A ‘weigord Sunooq a3 Ul ajqe) uoNIULAP € FurysIqeyss-oid

US 9,367,690 B2

Sheet 2 of 5

Jun. 14, 2016

U.S. Patent

¢ DId

v0¢C \

2[qBINOOXD

10U Sureq [ouIaY WolsAs gurerado paydAIosp oy ‘Jourey weolsAs Surjerado ayy 3dAroap 03 ‘wersoxd
3unooq ay) £q 03010} Furpuodsaliod anjeA Ysey poIndwod-o[qISIdAdI) [} JOS ON[BA 11q [UIY
Y1 JO SsanjeA 31q [auaay Jo Ayjeanyd sy Jo yoes jo uonisod Yy} Je 39S anjeA 31q [duIdy Yy} Suroejdar

A

¢0¢ \

A[PATIOSUSST "01I3[] SUIPUOUSSII0) JN[BA (SB[PoNAUIOd-I[(ISISASI € UTejqo 0] WeIs0xd sunooq a) AQ
012191} SUIPuOdsaLIOd 39S AN[RA }Iq [QUIAY Y} JO SANJBA 31q [duIdy JO Arpean|d oy} JO duO pue s anjea
11q unooq ay Jo sanjea 31q sunooq jo Areinyd ay) Jo yora 0) uonouny ysey a[qIsiaaal e gunndwod

a0¢ \

$19S aN[BA }1q [QUIY
oY) 01 SuIpuodsariod $19s anjeA 31q 3u100q A} ‘0312133 SuIpuodsaliod sanpeA 31q [duty Jo LArpeinyd
o1 Jo yoera Jo uonisod e pue weigord Sunooq ayy £q 9oeds 95.I0}S Y} UI [oUIdY W)SAs Funerado
oY) WOIJ SAN[LA 11q [ouIdy Jo Ajrpein(d & SurABy [oea S19S aN[BA 11q [SUISY dUO }SBI[Ik 10J FUIOO[pue
‘sopo9 Jo Ayrpeanyd pajoaras a3 03 Surpioooe weidord Sunooq oy Aq 9ords o3ri10)s ® ur weisoid Funooq
o) WOy sanjea 31q 3unooq jo Ajeinyd © JurAey yoed $39S dONJLA J1q UI300q dUO SB[I8 J0J Ful0O[

A

10¢ \

wes3ord Jupooq Ay} Aq papIodar uddq JulAry S9pod Jo Aipeind © Funoenxd

U.S. Patent Jun. 14,2016 Sheet 3 of 5 US 9,367,690 B2

/10

FIG. 3

code
@t
Shift
End
DDD
XYZ
135

US 9,367,690 B2

Sheet 4 of 5

Jun. 14, 2016

U.S. Patent

v "DIA

S0¢ \

2[grIN0X?3 10U FUI2Q [OUISY WAISAS Sunerado
pa1dAIoud o1 JowIoy woysAs Sunerodo o1y 1dAToUd 0) TowIoy wsAs Sunerado oy se poorjdor
anpeA Ysey U3 YIIm 13S AN[BA 11q [2UIdy Y} Suraes pue ‘AjpAandadsas ‘weidoid Sunooq ayy Aq 01212y)
Suipuodsariod anjea ysey Aleulq Yyl Yyiim 39S dN[BA 31q [QUISY dY3 JO SAN[BA 31q [Qu4dy Jo Anpeanid oy
Jo yoea jo uonisod oy} 1® 19s anyeA JIq [SUIOY Y} JO SaNTRA J1q [y Jo Ajjeanid a1 Jo yors Suroejdax

A

r0€ \

A10ANdsa1 ‘010101)) SuIpuodsorIod anjeA ysey AJeulq ure)qo o1 ‘weigord sunooq oy Aq
012191} FUIPUOSIIIOD 13S JM[BA JIq [SUIY A} JO SON[RA J1q [dUIY JO Ajjen|d 2y} JO SUO pue 1S dNfeA
11q SUnooq ay) Jo senpea 11q sunooq jo Areinid ay) Jo yora 0} Uonodunj ysey o[qisiaaal e sunnduioos

A

_ONJBA JIq [SUISY 3} 01 BuIpuodsariod
$105 an[eA 11q Sur00q oY} 0321y} SUIPUOdSalIod 198 aN[eA 11q [SUWISY Y} UI SaN[BA 11q [aWIay Jo Aypeinyd
oy Jo yoed jo uonisod e pue wessoid Sunooq oyj Aq odeds 03vI0)S O} UI [OUIdY WIISAS Funeiddo
oy} WO dnJeA }1q [ouIdy Jo Ajjeind © SuIARY YOO 1S dN[BA J1q [OUIIY JUO JSBI[B 10J FUINOO] pue
‘sop02 Jo Aljean|d pajos)as ay3 01 Suipiodde wel3old 3unooq ayy Aq sords 93101 B Ul weiFoid Funooq
Al WOy sanjeA 11q unooq Jo Aypeanid ® SuIARY [ora 1S an[eA 11q SUnooq auo 1Sea| je IoJ Sunjoo]

A

oI SI1J B JB PaInoaxa
st wesgord Sunooq oy} woym wersord Sunooq ay) Aq pejaofas uddq surAey sopod jo Apeinyd oy
Surp1oda1 pue weasord unooq Y} Aq S[qe) UOHIULFAP Y} WO SPod Jo Aean|d e Ajwopuer SundI[as

A

U
P2101s SOP0d SUIARY J[qE} UOBIULOP Y} ‘weidord Fuooq 2y} ul d[qe} UONIULAP € Surysijqeiss-aid

US 9,367,690 B2

Sheet 5 of 5

Jun. 14, 2016

U.S. Patent

¢ DIA

144% \

[ouIay waisAs sunerado paydAroap
AU} 9JN09Xd puk [ouIdy W)sAs Junerado oy 1dA10ep 01 ‘0j010Y) Surpuodsarrod anfeA ysey Aleulq
QY3 1M JUS)SISUO0D FuIdq s paredwiod s1 sanjea 31q [du1dy Jo Ayjein[d oy} Jo yoes jo uonisod oy 1e 308
oN[RA 11q [OUISY 91 JO SaNJRA 11q [SuIdy Jo Ajeinyd o) JO Yora USYM 198 9N[RA 1Iq [SUIdY oY) Suns[ep

A

s

AToAnadsal ‘03210 SuIrpuodsaliod anfeA ysey Aleurq o) urejqo 0} ‘wersord sunooq Ay Aq
01219Y) Surpuodsarrod 39S aN[eA }1q [QUISY Y} JO SaN[eA J1q [dUIdY JO Apein[d ay) JO SUO pue 39S an[eA
11q 3unooq ay} Jo sanyea 11q sunooq jo Aupeanyd ayy Jo yoea 01 uonodouny ysey o[qrsioral e sunndwod

kA

[dli% \

S13S an[eA 31q [QUIY Ay} 0} SUIPuOdsSAIIOd $33S dN[BA 31q SUI00Q Y} ‘03I
Surpuodsa1109 sanjeA 31q [duxay Jo Aypeanyd ayp Jo yoea jo uonisod e pue weisdoid Jurjooq oy} Aq doeds
05®I01S ® UI [oUIDY WISAS Funerado ay) WolJ san[eA 31q [ou1ay Jo Ayeinyd & SurAey [oBa $19S an[eA 1Iq

[OUIOY QU0 JSBI[JB 0] SUIOO[PueR ‘popPIOIAI Uddq SUIARY dN[BA [Sey ATRUIq U} JO Joquinu }iq) pue
SOp0o9 Jo Ajjeand pa3da[as Y} 03 Surpiodde weisosd unooq ayy £q doeds a5e103s © Ul werdord Jurooq
oY1 W0 san[eA 11q sunooq Jo Ajpeind v SurAry yora 19s anyeA 11q 3Unooq auo seaf Je 10J SUrjoo]

A

POPIOIAI U22Q FUIARY dNJeA USey Areulq
® JO Joquinu 11q & pue weidord Sujooq ay AQ papIodal uaaq suiaey sapod jo Ayeanyd e Sunoenxa

10Y \

US 9,367,690 B2

1
ENCRYPTION AND DECRYPTION
METHODS APPLIED ON OPERATING
SYSTEM

BACKGROUND OF RELATED ART

1. Technical Field

The present invention relates to an encryption and decryp-
tion methods, and particularly to an operating system kernel
encryption and decryption method.

2. Related Art

At present, booting a computer by a booting program and
verifying a booting process by an operating system kernel are
conducted separately. Namely, a booting process has to be
finished by performing the separate verification processes for
the booting program and the operating system kernel.

In the verification process for the booting program, an
operation-experienced digest is stored into an OTP area, and
the digest in the OTP will be selected and computed and
compared each time when the computer is booted to verify if
the booting program is correct.

On the other hand, in the verification process for the oper-
ating system kernel, a signature, a certificate and a root public
key have to be pre-stored in a main area. And, a private key
owned privately by the operating system kernel is utilized to
conduct a digital signature process for one-by-one verifica-
tion actions.

In the verification processes for the booting program and
the operating system kernel, the certificate and signature have
both to be compared to verify the correctness and complete-
ness. However, in the cases that the digest, signature, certifi-
cate, and toot public key are counterfeited, which are sup-
posed to be easier than resolving the booting program and the
operating system kernel, with the verification processes for
the booting program and the operating system kernel, the
verification processes may be still passed, lending to a risk of
being falsified or being replaced with the operating system
kernel.

In view of the above, it may be known that there has long an
issue of issue where the currently available booting program
and operating system kernel have to be separately verified and
the verification computation result has to be pre-stored into
the OPT area and compared, requiring several times of veri-
fication and a huge amount of additional storage space, which
are complex in the process, quite time consuming and unsafe.
Therefore, there is quite a need to set forth an improvement
means to settle down this problem.

SUMMARY

According to a first embodiment of the present invention,
an encryption method applied on an operating system kernel,
being suitable for use on a device having a booting program
and the operating system kernel stored therein, comprising
steps of pre-establishing a definition table in the booting
program, the definition table having codes stored therein;
selecting randomly a plurality of codes from the definition
table by the booting program and recording the plurality of
codes having been selected by the booting program when the
booting program is executed at a first time; looking for at least
one booting bit value set each having a plurality of booting bit
values from the booting program in a storage space by the
booting program according to the selected plurality of codes,
and looking for at least one kernel bit value set each having a
plurality of kernel bit value from the operating system kernel
in the storage space by the booting program and a position of
each of the plurality of kernel bit values in the kernel bit value

10

40

45

50

2

set corresponding thereto, the booting bit value sets corre-
sponding sequence to the kernel bit value sets; computing a
reversible hash function to each of the booting bit value set
and one of the kernel bit value set corresponding thereto by
the booting program, to obtain a hash value corresponding
thereto, respectively; and replacing each of the plurality of
kernel bit values of the kernel bit value set at the position of
each of the plurality of kernel bit values of the kernel bit value
set with the hash value corresponding thereto by the booting
program, respectively, and saving the kernel bit value set with
the hash value replaced as the operating system kernel, to
encrypt the operating system kernel, the encrypted operating
system kernel being not executable.

According to the first embodiment of the present invention,
a decryption method applied on an operating system kernel,
being suitable for use on a device having a booting program
and the operating system kernel having been encrypted cor-
respondingly, comprising steps of extracting a plurality of
codes having been recorded by the booting program; looking
for at least one booting bit value sets each having a plurality
of booting bit values from the booting program in a storage
space by the booting program according to the selected plu-
rality of codes, and looking for at least one kernel bit value
sets each having a plurality of kernel bit values from the
operating system kernel in the storage space by the booting
program and a position of each of the plurality of kernel bit
values corresponding thereto, the booting bit value sets cor-
responding to the kernel bit value sets; computing a reversible
hash function to each of the booting bit value set and one of
the kernel bit value set corresponding thereto by the booting
program, to obtain a reversible-computed hash value corre-
sponding thereto, respectively; and replacing each of the plu-
rality of kernel bit values of the kernel bit value set at the
position of each of the plurality of kernel bit values of the
kernel bit value set with the reversible-computed hash value
corresponding thereto by the booting program, respectively,
and saving the kernel bit value set with the hash value
replaced as the operating system kernel, to decrypt the oper-
ating system kernel, the decrypted operating system kernel
being not executable.

According to the a second aspect of the present invention,
an encryption method applied on an operating system kernel,
being suitable for use on a device having a booting program
and the operating system kernel stored therein, comprising
steps of pre-establishing a definition table in the booting
program, the definition table having codes stored therein;
selecting randomly a plurality of codes from the definition
table by the booting program and recording the plurality of
codes having been selected by the booting program when the
booting program is executed at a first time; looking for at least
one booting bit value set each having a plurality of booting bit
values from the booting program in a storage space by the
booting program according to the selected plurality of codes,
and looking for at least one kernel bit value set each having a
plurality of kernel bit value from the operating system kernel
in the storage space by the booting program and a position of
each of the plurality ofkernel bit values in the kernel bit value
set corresponding thereto, the booting bit value sets corre-
sponding sequence to the kernel bit value sets; computing a
reversible hash function to each of the booting bit value set
and one of the kernel bit value set corresponding thereto by
the booting program, to obtain a binary hash value corre-
sponding thereto, respectively; and replacing each of the plu-
rality of kernel bit values of the kernel bit value set at the
position of each of the plurality of kernel bit values of the
kernel bit value set with the binary hash value corresponding
thereto by the booting program, respectively, and saving the

US 9,367,690 B2

3

kernel bit value set with the hash value replaced as the oper-
ating system kernel, to encrypt the operating system kernel,
the encrypted operating system kernel being not executable.

According to the second aspect of the present invention, a
decryption method applied on an operating system kernel,
being suitable for use on a device having a booting program
and the operating system kernel having been encrypted cor-
respondingly, comprising steps of extracting a plurality of
codes having been recorded by the booting program and a bit
number of a binary hash value having been recorded; looking
for at least one booting bit value set each having a plurality of
booting bit values from the booting program in a storage
space by the booting program according to the selected plu-
rality of codes and the bit number of the binary hash value
having been recorded, and looking for at least one kernel bit
value sets each having a plurality of kernel bit values from the
operating system kernel in a storage space by the booting
program and a position of each of the plurality of kernel bit
values corresponding thereto, the booting bit value sets cor-
responding to the kernel bit value sets; computing a reversible
hash function to each of the plurality of booting bit values of
the booting bit value set and one of the plurality of kernel bit
values of the kernel bit value set corresponding thereto by the
booting program, to obtain the binary hash value correspond-
ing thereto, respectively; and deleting the kernel bit value set
when each of the plurality of kernel bit values of the kernel bit
value set at the position of each of the plurality of kernel bit
values is compared as being consistent with the binary hash
value corresponding thereto, to decrypt the operating system
kernel and execute the decrypted operating system kernel.
The encryption and decryption methods of the present inven-
tion have the difference as compared to the prior art that the
hash result is obtained from the computation between the
booting program and the operating system kernel by using the
definition table, the computation result is combined with the
operating system kernel for encryption of the operating sys-
tem kernel, and the operating system kernel may not be
decrypted and thus booted whenever the booting program, the
operating system kernel or the two combined are falsified or
replaced.

By using the above technical means, the present invention
may achieve the technical efficacy that the booting program
and the operating system kernel may be authenticated bilat-
erally for safety booting.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be better understood from the
following detailed descriptions of the preferred embodiments
according to the present invention, taken in conjunction with
the accompanying drawings, in which:

FIG.1is a flowchart of an encryption method applied on an
operating system kernel according to a first embodiment of
the present invention;

FIG. 2 is a flowchart of a decryption method applied on the
operating system kernel according to the first embodiment of
the present invention;

FIG. 3 is a schematic diagram of a definition table used for
the encryption method applied on the operating system kernel
according to the present invention;

FIG. 4 is a flowchart of the encryption method applied on
the operating system kernel according to a second aspect of
the present invention; and

FIG. 5 is a flowchart of the decryption method applied on
the operating system kernel according to the second aspect of
the present invention.

25

30

40

45

55

4
DETAILED DESCRIPTION

The present invention will be apparent from the following
detailed description, which proceeds with reference to the
accompanying drawings, wherein the same references relate
to the same elements.

According to a first embodiment of the present invention,
an encryption method applied on an operating system kernel
is suitable for use on a device having a booting program and
the operating system kernel stored therein, and which will be
described by setting forth a preferred embodiment for its
operation and process flow. And, this embodiment will be
explained with reference simultaneously to FIG. 1 and FIG. 2,
in which FIG. 1 is a flowchart of an encryption method
applied on an operating system kernel according to a first
embodiment of the present invention, while FIG. 2 is a flow-
chart of a decryption method applied on the operating system
kernel according to the first embodiment of the present inven-
tion.

Referring to FIG. 3 first, and which is a schematic diagram
of'adefinition table used for the encryption method applied on
the operating system kernel according to the present inven-
tion.

In the booting program, a definition table 10 is pre-estab-
lished, in which a plurality of codes 11 are stored (S101). In
FIG. 2, code 11 is “!@#”, which represents “selecting 4 bits”.
Code 11 is “Shift”, which represents “the 10% bit”, code 11 is
“End”, which represents “the 50” bit”, code 11 is “DDD”,
which represents “forward shift”, code 11 is “XYZ”, which
represents “backward shift”, and code 11 is “135”, which
represents “shifted by 20 bits”. Namely, each of the codes 11
stored in the definition table 10 represents one of a selected bit
number, a designated bit, a forward shift, a backward shift and
a shifted bit number. These are merely examples, without
limiting the present invention.

When the booting program is executed for the first time, the
booting program may randomly select from the definition
table 10 afirstcode “!@#”, asecond code “Shift”, athird code
“XYZ” and a fourth code “135”. According to the above
codes, it is pointed out that “selecting four bits from the 10?
bit, and selecting four bits beginning from 20 bits shift back-
wards from the 107 bits”. This is merely an example, without
limiting the present invention. Further, the booting program
may record the selected first code as “!@#”, the selected
second code as “Shift”, the selected third code as “XYZ”, and
the selected fourth code as “135” (S102).

Thereafter, assume the 107 bit to the 13” bit of the original
booting program in the storage space are “1010”, and the 30”
bit to the 33 bit of the original booting program in the storage
space are “0110”. The booting program may locate a first
booting bit value set by four bits in a storage space of the
booting program from the 10 bit “1010”, according to the
selected first code “!@#”, the selected second code “Shift”,
the selected third code as “XYZ”, and the selected fourth code
“135” (S103).

Then, the booting program may locate a second booting bit
value set by four bits in a storage space of the booting program
beginning from 20 bits shift backwards from the 10” bit as
“0110”, according to the selected first code “!@#”, the
selected second code “Shift”, the selected third code “XYZ”,
and the selected fourth code “135” (S103).

Next, assume the 10” bit to the 13? bit of the original
booting program in the storage space are “1111”, and the 307
bit to the 33” bit of the original booting program in the storage
space are “0011”. The booting program may locate a first
kernel bit value set by four bits in a storage space of the
booting program from the 10th bit as “11117, i.e. the bit

US 9,367,690 B2

5

values of the 107 bit to the 13” bit of the operating system
kernel, according to the selected first code as “!@#”, the
selected second code as “Shift”, the selected third code as
“XYZ”, and the selected fourth code as“135” (S103).

Next, the booting program may locate a second kernel bit
value set by four bits in a storage space of the booting program
beginning from 20 bits shift backwards from the 107 bit as
“00117, i.e. the bit values of the 307 bit to the 337 bit of the
booting program, according to the selected first code “!@#”,
the selected second code “Shift”, the selected third code
“XYZ”, and the selected fourth code “135” (S103).

Furthermore, the first booting bit value set “1010” may
correspond to the first kernel bit value set “1111” (S103), and
the second booting bit value set “0110” may also correspond
to the second kernel bit value set “0011” (S103).

Thereafter, the first booting bit value set “1010” and the
first kernel bit value set “1111” are subject together to an
irreversible hash function by the booting program. In a pref-
erable embodiment, the irreversible hash function is a “logic
XOR operation”, and which may otherwise be a “bitwise
operation”. These are merely examples, without limiting the
present invention. A first hash result “0101” is obtained when
the logic XOR operation is applied onto the first booting bit
value set “1010” and the first kernel bit value set “1111”
(S104).

Thereafter, the second booting bit value set “0110” and the
second kernel bit value set “0011” are subject together to an
irreversible hash function by the booting program. In a pref-
erable embodiment, the irreversible hash function is a “logic
XOR operation”. A second hash result “0101” is obtained
when the logic XOR operation is applied onto the second
booting bit value set “0110” and the second kernel bit value
set “0101” (S104).

Subsequently, the booting program replaces the kernel bit
values “1111” at first kernel bit positions “from the to the 10
bit to the 13” bit” with the corresponding first hash value
“0101”, and the kernel bit values “0011” at second kernel bit
positions “from the 30? bit to the 33% bit” with the corre-
sponding first hash value “0101”. Then, the operating system
kernel is stored again (S105).

By means of the above process, the operating system may
be encrypted and the thus encrypted operating system kernel
may not be executed.

Thereafter, when the booting program is executed for the
first time and the operating system kernel has been finished
with the encryption, or the booting program is not executed
for the first time, the booting program will extract the
recorded first code “!@#”, the recorded second code “Shift”,
the third recorded code “XYZ”, and the fourth recorded
code“135” (201).

Thereafter, the booting program may locate the first boot-
ing bit value set “1010”, i.e. the values of the 10th bit to the
13™ bit, from a storage space of the booting program accord-
ing to the selected first code “!@#”, the recorded second code
“Shift”, the recorded third code “XYZ” and the recorded
fourth code “135” (S202).

Then, the booting program may locate a second booting bit
value set by four bits in a storage space of the booting program
beginning from 20 bits shift backwards from the 107 bit as
“01107, i.e. the values of the 307 bit to the 337 bit of the
booting program, according to the selected first code “!@#”,
the selected second code “Shift”, the selected third code
“XYZ”, and the selected fourth code “135” (S202).

Thereafter, the booting program may locate the first boot-
ing bit value set “0101”, i.e. the values of the 107 bit to the
137 bit, from a storage space of the booting program accord-
ing to the selected first code “!@#”, the recorded second code

10

15

20

25

30

35

40

45

50

55

60

65

6
“Shift”, the recorded third code “XYZ” and the recorded
fourth code “135”, and the position of the first kernel bit value
set “0101” is also located as “the 10” bit to the 13 bit”
(S202).

Next, the booting program may locate a second kernel bit
value set by four bits in a storage space of the booting program
beginning from 20 bits shift backwards from the 10” bit as
“01017, i.e. the bit values of the 307 bit to the 337 bit of the
booting program, according to the selected first code “!@#”,
the selected second code “Shift”, the selected third code
“XYZ”, and the selected fourth code “135”, and the position
ofthe second kernel bit value set “0101” is also located as “the
307 bit to the 337 bit” (S202).

Furthermore, the first booting bit value set “1010” may
correspond to the first kernel bit value set “1111” (S202), and
the second booting bit value set “0110” may also correspond
to the second kernel bit value set “0101” (5202).

Thereafter, the first booting bit value set “1010” and the
first kernel bit value set “0101” are subject together to an
irreversible hash function by the booting program. In a pref-
erable embodiment, the irreversible hash function is a “logic
XOR operation”, and which may otherwise be a “bitwise
operation”. These are merely examples, without limiting the
present invention. A first hash result “1111” is obtained when
the logic XOR operation is applied onto the first booting bit
value set “1010” and the first kernel bit value set “0111”
(S203).

Thereafter, the second booting bit value set “0110” and the
second kernel bit value set “0101” are subject together to an
irreversible hash function by the booting program. In a pref-
erable embodiment, the irreversible hash function is a “logic
XOR operation”. A second hash result “0011” is obtained
when the logic XOR operation is applied onto the second
booting bit value set “0110” and the second kernel bit value
set “0101” (S203).

Subsequently, the booting program replaces the first kernel
bit values “0101” at first kernel bit positions “from the to the
10? bit to the 13 bit” with the corresponding first hash value
“0011”, and the kernel bit values “0011” at second kernel bit
positions “from the 30? bit to the 33” bit” with the corre-
sponding first irreversible hash value “0011”. As such, the
operating system kernel may be restored back to the original
operating system kernel (S204).

By means of the above process, the operating system may
be decrypted, and the thus-decrypted operating system kernel
may be executed.

Assume the booting program is falsified, the 10” to 13
bits are amended into “0000”, and the 307 to 337 bits “1111”
in the booting program at this time, the booting program may
locate four bits as the first booting bit value set “0000”, i.e. the
values of the 107 to 13? bits from the storage space of the
booting program according to the selected first code “!@#”,
the selected second code “Shift”, the selected third code
“XYZ”, and the selected fourth code “135”.

Thereafter, the booting program may locate four bits as the
first booting bit value set“1111”, i.e. the values of the four bits
beginning from a 20 bits backward shift from the 10 bit, the
307 to 33" bits, from the storage space of the booting pro-
gram beginning from the 10” bit according to the selected
first code “!@#”, the selected second code “Shift”, the
selected third code “XYZ”, and the selected fourth code
“1357.

Thereafter, the booting program may locate the first kernel
bit value set “01017, i.e. the values of the 107 to 137 bits, the
positions of the first kernel bits, from the storage space of the
booting program, according to the selected first code “!@#”,

US 9,367,690 B2

7

the selected second code “Shift”, the selected third code
“XYZ”, and the selected fourth code “135”.

Thereafter, the booting program may locate the second
booting bit value set “0101” from the values of the four bits
beginning from a 20 bits backward shift from the 10th bit, the
30” to 33 bits, from the storage space of the booting pro-
gram, and the second kernel bit value set “0101” at the posi-
tions of the second kernel bits “the 30” to the 337 bits”
according to the selected first code “!@#”, the selected sec-
ond code “Shift”, the selected third code “XYZ”, and the
selected fourth code “135”.

Furthermore, the first booting bit value set is “0000” cor-
responds to the first kernel bit value set is “0101”, and the
second booting bit value set is “1111” corresponds to the
second kernel bit value set is “0101”.

Thereafter, the first booting bit value set “0000” and the
first kernel bit value set “0101” are subject together to an
irreversible hash function by the booting program. In a pref-
erable embodiment, the irreversible hash function is a “logic
XOR operation”, whose irreversible operation is also the
“logic XOR operation”. A first hash result “0101” is obtained
when the logic XOR operation is applied onto the first booting
bit value set “0101” and the first kernel bit value set “0101”.

The booting program may subject the second booting bit
value set “1111” and the second kernel bit value set “0101”
together to the irreversible hash function. In a preferable
embodiment, the irreversible hash function is a “logic XOR
operation”, and whose irreversible operation is also the “logic
XOR operation”. A second hash result “1010” is obtained
when the logic XOR operation is applied onto the second
booting bit value set “1111” and the second kernel bit value
set “0101”.

Subsequently, the booting program replaces the first kernel
bit values “0101” at first kernel bit positions “from the to the
107 bit to the 13 bit” with the corresponding first irreversible
hash value 01017, and the second kernel bit values “0101” at
second kernel bit positions “from the 307 bit to the 33% bit”
with the corresponding first irreversible hash value “0011”.
As such, the operating system kernel may not be restored
back to the original operating system kernel, and the operat-
ing system kernel may not be executed.

Assume the booting program is falsified, the 10” to 13
bits are amended into “0000”, and the 307 to 33% bits “1111”
in the booting program at this time, the booting program may
locate four bits as the first booting bit value set “1010”, i.e. the
values of the 10” to 13" bits from the storage space of the
booting program which are falsified, according to the selected
first code “!@#”, the selected second code “Shift”, the
selected third code “XYZ”, and the selected fourth code
“1357.

Thereafter, the booting program may locate four bits as the
second booting bit value set “0110”, i.e. the values of the four
bits beginning from a 20 bits backward shift from the 107 bit,
at the position of the 307 to 33 bits, from the storage space
of the booting program according to the selected first code
“l@#”, the selected second code “Shift”, the selected third
code “XYZ”, and the selected fourth code “135”.

Thereafter, the booting program may locate the first kernel
bit value set “00007, i.e. the values of the 107 to 137 bits, the
positions of the first kernel bits, which are simultaneously
located, from the storage space of the booting program,
according to the selected first code “!@#”, the selected sec-
ond code “Shift”, the selected third code “XYZ”, and the
selected fourth code “135”.

Thereafter, the booting program may locate the second
booting bit value set “1111” from the values of the four bits
beginning from a 20 bits backward shift from the 10 bit, the

10

15

20

25

30

35

40

45

50

55

60

8

30” to 33 bits, from the storage space of the booting pro-
gram, and the second kernel bit value set “1111” at the posi-
tions of the second kernel bits “the 307 to the 337 bits”,
according to the selected first code “!@#”, the selected sec-
ond code “Shift”, the selected third code “XYZ”, and the
selected fourth code “135”.

Furthermore, the first booting bit value set is “1010” cor-
responds to the first kernel bit value set is “0000”, and the
second booting bit value set is “0110” corresponds to the
second kernel bit value set is “1111”.

Thereafter, the first booting bit value set “1010” and the
first kernel bit value set “0000” are subject together to an
irreversible hash function by the booting program. In a pref-
erable embodiment, the irreversible hash function is a “logic
XOR operation”, whose irreversible operation is also the
“logic XOR operation”. A first hash result “1010” is obtained
when the logic XOR operation is applied onto the first booting
bit value set “1010” and the first kernel bit value set “0000”.

The booting program may subject the second booting bit
value set “0110” and the second kernel bit value set “1111”
together to the irreversible hash function. In a preferable
embodiment, the irreversible hash function is a “logic XOR
operation”, and whose irreversible operation is also the “logic
XOR operation”. A second hash result “1001” is obtained
when the logic XOR operation is applied onto the second
booting bit value set “0110” and the second kernel bit value
set “1111”.

Subsequently, the booting program replaces the first kernel
bit values “0000” at first kernel bit positions “from the to the
107 bitto the 137 bit” with the corresponding first irreversible
hash value “1010”, and the second kernel bit values “1111” at
second kernel bit positions “from the 307 bit to the 33% bit”
with the corresponding first irreversible hash value “1001”.
As such, the operating system kernel may not be restored
back to the original operating system kernel, and the operat-
ing system kernel may not be executed.

As such, a device having the booting program and the
operating system kernel stored therein may be provided to be
booted safely, the booting program is used to be computed
together with the operating system kernel, avoiding a large
amount of computation verification and thus a prolonged
system booting time, one time of computation may authenti-
cate mutually the booting program and the operating system
kernel, there is no information swap between the booting
program and the operating system kernel, the hash value may
be avoided from being transmitted and thus stolen, and dif-
ferent devices may have different encryption ways although
their operating systems are the same and thus the decryption
information or ways of one such device may not be acquired
by the operating system kernels on any of the other such
devices.

In addition, when a re-encrypt operating system kernel
encryption condition is triggered or one of the booting pro-
gram and the operating system is updated, all the steps of the
operating system decryption method are first performed and
then an encryption process corresponding to the operating
system kernel is performed. Among them, the re-encrypt
operating system kernel condition includes a multiple times
booting failure condition, a time condition, and a command
condition. These are merely examples, without limiting the
present invention. When a multiple times booting failure con-
dition is triggered, a brute-force attack is determined as hav-
ing occurred and an associated measure may be provided to
avoid from being resolved owing to the brute force. The time
condition may be the operating system kernel timely capable
of being differently encrypted. The command condition may
be the operating system kernel capable of being conducted

US 9,367,690 B2

9

with an amended encryption directly by a user. As such, the
user may rapidly and conveniently perform the operating
system kernel encryption and decryption, and the re-encrypt
operating system kernel encryption is facilitated to be con-
ducted.

According to a second aspect of the present invention, the
encryption method applied on the operating system kernel,
being suitable for use on a device having a booting program
and the operating system kernel stored therein, which will be
explained in its operation and process flow with simulta-
neously reference to FIG. 3, FIG. 4 and FIG. 5, in which FIG.
4 is a flowchart of the encryption method applied on the
operating system kernel according to a second aspect of the
present invention, and

FIG. 5 is a flowchart of the decryption method applied on
the operating system kernel according to the second aspect of
the present invention.

In the booting program, a definition table 10 is pre-estab-
lished, in which a plurality of codes 11 are stored (S301), and
the definition table 10 may be referred to FIG. 2. When the
booting program is the first time executed, the booting pro-
gram will randomly select from the definition table 10 a first
code “!@#”, a second code “End”, a third code “DDD”, and
a fourth code 11 “135”. These codes represent “selecting 4
bits from the 507 bit, and reselecting 4 bits from 20 bits
shifted forwards beginning from the 50” bit”. These are
merely examples, without limiting the present invention. The
booting program will record the selected first code as “!@#”,
the second code as “End”, the third code as “DDD”, and the
fourth code as*“135” (S302).

Thereafter, assume the 507 bit to the 537 bit of the original
booting program in the storage space are “1010”, and the 30”
bit to the 33? bit of the original booting program in the storage
space are “0110”. The booting program may locate a first
booting bit value set by four bits in a storage space of the
booting program from the 10? bit “1010”, according to the
selected first code “!@#”, the selected second code “End”, the
selected third code as “DDD”, and the selected fourth code
“135” at positions of the 50” to the 53 bits in the booting
program (S303).

Then, the booting program may locate a second booting bit
value set by four bits in the storage space of the booting
program from 20 bits shifted forwards beginning from the 50
bits as “0110”, according to the selected first code “! @#”, the
selected second code “End”, the selected third code as
“DDD”, and the selected fourth code“135” at positions of the
30th to the 33th bits (S303).

Next, assume the 107 bit to the 13% bit of the original
booting program in the storage space are “1111”, and the 30”
bit to the 33? bit of the original booting program in the storage
space are “0011”. The booting program may locate a first
kernel bit value set by four bits in a storage space of the
booting program from the 507 bit as “1111”, i.e. the bit values
of the 107 bit to the 13 bit of the operating system kernel,
according to the selected first code as “!@#”, the selected
second code “End”, the selected third code as “DDD”, and the
selected fourth code as “135” (S303).

Next, the booting program may locate a second kernel bit
value set by four bits in a storage space of the booting program
from 20 bits shifted forwards beginning from the 507 bit as
“00117, i.e. the bit values of the 307 bit to the 337 bit of the
booting program, according to the selected first code “!@#”,
the selected second code “End”, the selected third code as
“DDD?, and the selected fourth code “135” (S303).

15

20

40

45

55

60

10

Further, the first booting bit value set “1010” corresponds
to the first kernel bit value set “1111” (S303), and the second
booting bit value set “0110” corresponds to the second kernel
bit value set “0011” (S303).

Thereafter, the booting program launches an irreversible
hash function onto the first booting bit value set “1010” and
the first kernel bit value set “1111”. In a preferred embodi-
ment, the irreversible hash function is an “MDS5 operation”,
and may also be “SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512, MD2, MD3, and MD4 operations”. These are
merely examples, without limiting the present invention.
After the MDS5 operation, a result obtained from the first
booting bit value set “1010” and the first kernel bit value set
“1111” is then converted into a binary result, assumed as
“111100001010010100001111”, which is a desired first
binary hash value “111100001010010100001111”. And, the
booting program may record the first binary hash value expe-
riencing the computation as having a bit number of “24”
(S304).

The booting program launches the irreversible hash func-
tion onto the second booting bit value set “0011” and the
second kernel bit value set “0011”. In a preferred embodi-
ment, the irreversible hash function is an “MDS5 operation”.
After the MDS5 operation, a result obtained from the first
booting bit value set “0110” and the first kernel bit value set
“0011” is then converted into a binary result, assumed as
“101000001010010100000101”, which is a desired second
binary hash value “101000001010010100000101”. And, the
booting program may record the second binary hash value
experiencing the computation as having a bit number of “24”
(S304).

Thereafter, the booting program inserts the first binary has
value “111100001010010100001111” prior to the first kernel
bit position “the 50" bit”, according to the third code “DDD”.
In addition, the booting program inserts the second binary has
value “101000001010010100000101” prior to the second
kernel bit position “the 30 bit”, according to the third code
“DDD”, and the operating system kernel is stored again
(S305).

By means of the above process, the operating system kernel
may be encrypted, and the thus encrypted operating system
kernel cannot be executed.

Thereafter, when the booting program is executed for the
first time and the operating system kernel has been finished
with the encryption, or the booting program is not executed
for the first time, or the booting program is not executed for
the first time, the booting program may first extract the
recorded first code “!@#”, the recorded second code “End”,
the recorded third code “DDD” and the recorded fourth code
“135”, the recorded first hash value bit number “24” and the
recorded second hash value bit number “24” (S401).

Then, the booting program may locate a first booting bit
value set by four bits in the storage space of the booting
program beginning from 50 bits as “1010”, i.e. the values of
the 507 bit to the 53 bit of the booting program, according to
the selected first code “! @#”, the selected second code “End”,
the selected third code “DDD?”, and the selected fourth code
“135” (S402).

Next, the booting program may locate a second kernel bit
value set by four bits in a storage space of the booting program
from 20 bits forward shift beginning from the 207 bit as
“0110”, i.e. the values of the 307 bit to the 337 bit of the
booting program, according to the selected first code “!@#”,
the selected second code “End”, the selected third code
“DDD?, and the selected fourth code “135” (S402).

Thereafter, the booting program may locate a first kernel
bit value set by four bits in the storage space of the booting

US 9,367,690 B2

11

program from 98 bits, i.e. the 50” bit pluses 48 bits, as
“0101”, i.e. the values of the 987 bit to the 102 bit of the
booting program, and the positions of the first kernel bits “the
74 bit to the 977 bit, “according to the selected first code
“l@#”, the selected second code “End”, the selected third
code “DDD”, and the selected fourth code “135” (S402).

Thereafter, the booting program may locate a second ker-
nel bit value set by four bits in the storage space of the booting
program from a 44 bits forward shift beginning from the 98
bit, i.e. the 507 bit pluses 48 bits, as “0101”, i.e. the values of
the 98 bit-44 bits, and the positions of the second kernel bits
“the 307 bit to the 537 bit”, i.e. the 547 bit-24bits to the
54bits-1 bit, according to the selected first code “!@#”, the
selected second code “End”, the selected third code “DDD”,
the selected fourth code “135”, the first binary hash bit num-
ber “24”, and the second binary hash value bit number “24”
(S402).

Furthermore, the first booting bit value set “1010” corre-
sponds to the first kernel bit value set “0101” (S402), and the
second booting bit value set “0110” corresponds to the second
kernel bit value set “0101” (S402).

Thereafter, the booting program launches the irreversible
hash function onto the first booting bit value set “1010” and
the first kernel bit value set “0101”. In a preferred embodi-
ment, the irreversible hash function is an “MDS5 operation”.
After the MDS5 operation, a result obtained from the first
booting bit value set “1010” and the first kernel bit value set
“0101” is then converted into a binary result, assumed as
“111100001010010100001111”, which is a desired second
binary hash value “101000001010010100000101” (S403).

The booting program launches the irreversible hash func-
tion onto the second booting bit value set “0110” and the
second kernel bit value set “0101”. In a preferred embodi-
ment, the irreversible hash function is an “MDS5 operation”.
After the MDS5 operation, a result obtained from the second
booting bit value set “0110” and the second kernel bit value
set “0101” is then converted into a binary result, assumed as
“101000001010010100000101”, which is a desired second
binary hash value “101000001010010100000101” (S403).

Thereafter, the booting program compares the first kernel
bit positions “the 74 bit to the 97 bits” having the kernel bit
values “111100001010010100001111” with the first binary
hash value “111100001010010100001111” as being consis-
tent. Namely, the kernel bit value
“111100001010010100001111” of the first kernel bit posi-
tions “the 747 to the 977 bits” may be deleted.

On the other hand, the booting program compares the
second kernel bit positions “the 307 bit to the 53” bits”
having the kernel bit values “101000001010010100000101”
with the second binary hash value
“101000001010010100000101” as being consistent.
Namely, the kernel bit value “101000001010010100000101”
of the first kernel bit positions “the 307 to the 537 bits” may
be deleted, thereby the original operating system kernel may
be restored (S404).

By means ofthe above process, the operating system kernel
may be decrypted, and the thus decrypted operating system
kernel may be executed.

Assume the booting program is falsified, the 50” to 53%
bits are amended into “0000”, and the 307 to 337 bits “1111”
in the booting program at this time, the booting program may
locate four bits as the first booting bit value set “0000”, i.e. the
values of the 10” to 13" bits from the storage space of the
falsified booting program according to the selected first code
“l@#”, the selected second code “End”, the selected third
code “DDD?”, and the selected fourth code “135”.

20

30

35

40

45

55

12

Thereafter, the booting program may locate four bits as the
second booting bit value set “0101”, i.e. the values of the 987,
i.e. the 50” bit pluses 48 bits, to 102 bits of the booting
program, from the storage space of the booting program
beginning from the 507 bit, and the corresponding first kernel
bit positions “the 74" bit to the 97 bit”, the 98 bit-24 bits to
the 98”-1 bit, according to the selected first code “!@#”, the
selected second code “End”, the selected third code “DDD”,
and the selected fourth code “135”.

Thereafter, the booting program may locate a second ker-
nel bit value set “01017, i.e. the bit value of the 54” bit to the
57" bit value, from the storage space of the operating system
kernel from a 44 bits, the 987 bit-the 44” h bit, forward shift
beginning from the 987 bit, i.e. the 507 bit+48 bits, and the
corresponding second kernel bit positions “the 30 bit to the
537 bit”, i.e. the 547 bit-24 bits to the 547 bit-1 bit, according
to the selected first code “!@#”, the selected second code
“End”, the selected third code “DDD”, and the selected fourth
code “135”.

Furthermore, the first booting bit value set “0000” corre-
sponds to the first kernel bit value set “0101”, and the second
booting bit value set “1111” corresponds to the second kernel
bit value set “0101”

Thereafter, the booting program launches the irreversible
hash function onto the first booting bit value set “0000” and
the first kernel bit value set “0101”. In a preferred embodi-
ment, the irreversible hash function is an “MDS5 operation”.
After the MDS5 operation, a result obtained from the first
booting bit value set “0000” and the first kernel bit value set
“0101” is then converted into a binary result, assumed as
“000000001010010100000000”, which is a desired second
binary hash value “000000001010010100000000”.

The booting program launches the irreversible hash func-
tion onto the second booting bit value set “1111” and the
second kernel bit value set “0101”. In a preferred embodi-
ment, the irreversible hash function is an “MDS5 operation”.
After the MDS5 operation, a result obtained from the second
booting bit value set “1111” and the second kernel bit value
set “0101” is then converted into a binary result, assumed as
“101011111010010111110101”, which is a desired second
binary hash value “101011111010010111110101”.

Thereafter, the booting program compares the first kernel
bit positions “the 74 bit to the 97* bits” having the kernel bit
values “111100001010010100001111” with the first binary
hash value “000000001010010100000000” as being incon-
sistent. Namely, the kernel bit value
“111100001010010100001111” of the first kernel bit posi-
tions “the 74” to the 97 bits” will not be deleted.

On the other hand, the booting program compares the
second kernel bit positions “the 30? bit to the 53" bits”
having the kernel bit values “101000001010010100000101”
with the second binary hash value
“101000001010010100000101” as being inconsistent.
Namely, the kernel bit value “101000001010010100000101”
of the first kernel bit positions “the 74” to the 97" bits” will
not be deleted, thereby the original operating system kernel
may not be restored and thus executed.

Assume the booting program is falsified, the 98” to 102
bits are amended into “0000”, and the 547 to 577 bits “1111”
in the booting program at this time, the booting program may
locate four bits as the first booting bit value set “1010”,; i.e. the
values of the 50” to 53" bits from the storage space of the
falsified booting program according to the selected first code
“l@#”, the selected second code “End”, the selected third
code “DDD”, and the selected fourth code “135”.

Thereafter, the booting program may locate four bits as the
second booting bit value set “0110”, i.e. the values of the 30

US 9,367,690 B2

13

to 33 bits of the booting program, from the storage space of
the booting program from a 20 bits forward shift beginning
from the 50” bit, according to the selected first code “!@#”,
the selected second code “End”, the selected third code
“DDD”, and the selected fourth code “135”.

Thereafter, the booting program may locate a first kernel
bit value set “0101”, i.e. the bit value of the 547 bit to the 577
bit value, from the storage space of the operating system
kernel by four bits from the 98 bit, i.e. the 507 bit+48 bits,
and the corresponding first kernel bit positions “the 74” bit to
the 977 bit”, i.e. the 987 bit-24 bits to the 987 bit-1 bit,
according to the selected first code “!@#”, the selected sec-
ond code “End”, the selected third code “DDD?”, the selected
fourth code “135”, the first binary hash value bit number “24”
and the second binary hash value bit number “24”.

Thereafter, the booting program may locate a second ker-
nel bit value set “11117, i.e. the bit value of the 54” bit to the
57" bit value, from the storage space of the operating system
kernel by four bits from a 44 bits forward shift from the 987
bit, i.e. the 507 bit+48 bits, i.e. the 987 bit-44 bits, and the
corresponding second kernel bit positions “the 307 bit to the
53 bit”, according to the selected first code “!@#”, the
selected second code “Shift”, the selected third code “XYZ”,
the selected fourth code “135”, the first binary hash value bit
number “24” and the second binary hash value bit number
“24”.

Furthermore, the first booting bit value set “1010” corre-
sponds to the first kernel bit value set “0000”, and the second
booting bit value set “0110” corresponds to the second kernel
bit value set “1111”.

Thereafter, the booting program launches the irreversible
hash function onto the first booting bit value set “1010” and
the first kernel bit value set “0000”. In a preferred embodi-
ment, the irreversible hash function is an “MDS5 operation”.
After the MDS5 operation, a result obtained from the first
booting bit value set “1010” and the first kernel bit value set
“0000” is then converted into a binary result, assumed as
“000000001010010100000000”, which is a desired second
binary hash value “000000001010010100000000”.

The booting program launches the irreversible hash func-
tion onto the second booting bit value set “0110” and the
second kernel bit value set “1111”. In a preferred embodi-
ment, the irreversible hash function is an “MDS5 operation”.
After the MDS5 operation, a result obtained from the second
booting bit value set “0110” and the second kernel bit value
set “1111” is then converted into a binary result, assumed as
“101011111010010111110101”, which is a desired second
binary hash value “101011111010010111110101”.

Thereafter, the booting program compares the first kernel
bit positions “the 74 bit to the 97 bits” having the kernel bit
values “111100001010010100001111” with the first binary
hash value “000000001010010100000000 as being incon-
sistent. Namely, the kernel bit value
“111100001010010100001111” of the first kernel bit posi-
tions “the 74™ to the 977 bits” will not be deleted.

On the other hand, the booting program compares the
second kernel bit positions “the 30? bit to the 53 bits”
having the kernel bit values “101000001010010100000101”
with the second binary hash value
“101000001010010100000101” as being inconsistent.
Namely, the kernel bit value 101011111010010111110101”
of the second kernel bit positions “the 30? to the 53% bits”
will not be deleted, thereby the original operating system
kernel may not be restored and thus executed.

As such, a device having the booting program and the
operating system kernel stored therein may be provided to be
booted safely, the booting program is used to be computed

15

25

30

40

45

50

55

14

together with the operating system kernel, avoiding a large
amount of computation verification and thus a prolonged
system booting time, one time of computation may authenti-
cate mutually the booting program and the operating system
kernel, there is no information swap between the booting
program and the operating system kernel, the hash value may
be avoided from being transmitted and thus stolen, and dif-
ferent devices may have different encryption ways although
their operating systems are the same and thus the decryption
information or ways of one such device may not be acquired
by the operating system kernels on any of the other such
devices.

In addition, when a re-encrypt operating system kernel
encryption condition is triggered or one of the booting pro-
gram and the operating system is updated, all the steps of the
operating system decryption method are first performed and
then an encryption process corresponding to the operating
system kernel is performed, and which have been described
and thus omitted herein for clarity. Among them, the re-
encrypt operating system kernel condition includes a multiple
times booting failure condition, a time condition, and a com-
mand condition. These are merely examples, without limiting
the present invention. When a multiple times booting failure
condition is triggered, a brute-force attack is determined as
having occurred and an associated measure may be provided
to avoid from being resolved owing to the brute force. The
time condition may be the operating system kernel timely
capable of being differently encrypted. The command condi-
tion may be the operating system kernel capable of being
conducted with an amended encryption directly by a user. As
such, the user may rapidly and conveniently perform the
operating system kernel encryption and decryption without
any discomfort with the process, and the re-encrypt operating
system kernel encryption is facilitated to be conducted.

In view of the above, it may be known that the encryption
and decryption methods of the present invention have the
difference as compared to the prior art that the hash result is
obtained from the computation between the booting program
and the operating system kernel by using the definition table,
the computation result is combined with the operating system
kernel for encryption of the operating system kernel, and the
operating system kernel may not be decrypted and thus
booted whenever the booting program, the operating system
kernel or the two combined are falsified or replaced.

By means of the above methods, the issue encountered in
the prior art may be overcome, where the currently available
booting program and operating system kernel have to be
separately verified and the verification computation result has
to be pre-stored into the OPT area and compared, requiring
several times of verification and a huge amount of additional
storage space, which are complex in the process, quite time
consuming and unsafe.

The encryption and decryption methods of the present
invention have the difference as compared to the prior art that
the hash result is obtained from the computation between the
booting program and the operating system kernel by using the
definition table, the computation result is combined with the
operating system kernel for encryption of the operating sys-
tem kernel, and the operating system kernel may not be
decrypted and thus booted whenever the booting program, the
operating system kernel or the two combined are falsified or
replaced.

By using the above technical means, the present invention
may achieve the technical efficacy that the booting program
and the operating system kernel may be authenticated bilat-
erally for safety booting.

US 9,367,690 B2

15

Although the invention has been described with reference
to specific embodiments, this description is not meant to be
construed in a limiting sense. Various modifications of the
disclosed embodiments, as well as alternative embodiments,
will be apparent to persons skilled in the art. It is, therefore,
contemplated that the appended claims will cover all modifi-
cations that fall within the true scope of the invention.

What is claimed is:

1. An encryption method applied on an operating system
kernel, being suitable for use on a device having a booting
program and the operating system kernel stored therein, com-
prising steps of:

pre-establishing a definition table in the booting program,

the definition table having codes stored therein;
selecting randomly a plurality of codes from the definition
table by the booting program and recording the plurality
of codes having been selected by the booting program
when the booting program is executed at a first time;
looking for at least one booting bit value set each having a
plurality of booting bit values from the booting program
in a storage space by the booting program according to
the selected plurality of codes, and looking for at least
one kernel bit value set each having a plurality of kernel
bit value from the operating system kernel in the storage
space by the booting program and a position of each of
the plurality ofkernel bit values in the kernel bit value set
corresponding thereto, the booting bit value sets corre-
sponding sequence to the kernel bit value sets;
computing a reversible hash function to each of the booting
bit value set and one of the kernel bit value set corre-
sponding thereto by the booting program, to obtain a
hash value corresponding thereto, respectively; and
replacing each of the plurality of kernel bit values of the
kernel bit value set at the position of each of the plurality
of kernel bit values of the kernel bit value set with the
hash value corresponding thereto by the booting pro-
gram, respectively, and saving the kernel bit value set
with the hash value replaced as the operating system
kernel, to encrypt the operating system kernel, the
encrypted operating system kernel being not executable.

2. The encryption method applied on the operating system
kernel as claimed in claim 1, wherein each of the plurality of
codes stored in the definition table has a meaning selected
from a group consisting of a selected bit number, a designated
bit, a frontward shift, a backward shift, and a shifted bit
number.

3. The encryption method applied on the operating system
kernel as claimed in claim 1, wherein the reversible hash
function includes an XOR logic operation and a bitwise
operation.

4. A decryption method applied on an operating system
kernel, being suitable for use on a device having a booting
program and the operating system kernel having been
encrypted correspondingly, comprising steps of:

extracting a plurality of codes having been recorded by the

booting program;

looking for at least one booting bit value sets each having

a plurality of booting bit values from the booting pro-
gram in a storage space by the booting program accord-
ing to the selected plurality of codes, and looking for at
least one kernel bit value sets each having a plurality of
kernel bit values from the operating system kernel in the
storage space by the booting program and a position of
each of the plurality of kernel bit values corresponding
thereto, the booting bit value sets corresponding to the
kernel bit value sets;

15

35

40

45

65

16

computing a reversible hash function to each of the booting
bit value set and one of the kernel bit value set corre-
sponding thereto by the booting program, to obtain a
reversible-computed hash value corresponding thereto,
respectively; and

replacing each of the plurality of kernel bit values of the

kernel bit value set at the position of each of the plurality
of kernel bit values of the kernel bit value set with the
reversible-computed hash value corresponding thereto
by the booting program, respectively, and saving the
kernel bit value set with the hash value replaced as the
operating system kernel, to decrypt the operating system
kernel, the decrypted operating system kernel being not
executable.

5. The decryption method applied on the operating system
kernel as claimed in claim 4, wherein the reversible-com-
puted hash function includes an XOR logic operation and a
bitwise operation.

6. The decryption method applied on the operating system
kernel as claimed in claim 4, further comprising a step of first
performing all the steps of the operating system decryption
method and then performing an encryption process corre-
sponding to the operating system kernel, when a re-encrypt
operating system kernel encryption condition is triggered or
one of the booting program and the operating system is
updated.

7. The decryption method applied on the operating system
kernel as claimed in claim 6, wherein the re-encrypt operating
system kernel condition includes a multiple times booting
failure condition, a time condition, and a command condition.

8. An encryption method applied on an operating system
kernel, being suitable for use on a device having a booting
program and the operating system kernel stored therein, com-
prising steps of:

pre-establishing a definition table in the booting program,

the definition table having codes stored therein;
selecting randomly a plurality of codes from the definition
table by the booting program and recording the plurality
of codes having been selected by the booting program
when the booting program is executed at a first time;
looking for at least one booting bit value set each having a
plurality of booting bit values from the booting program
in a storage space by the booting program according to
the selected plurality of codes, and looking for at least
one kernel bit value set each having a plurality of kernel
bit value from the operating system kernel in the storage
space by the booting program and a position of each of
the plurality of kernel bit values in the kernel bit value set
corresponding thereto, the booting bit value sets corre-
sponding sequence to the kernel bit value sets;

computing a reversible hash function to each of the booting
bit value set and one of the kernel bit value set corre-
sponding thereto by the booting program, to obtain a
binary hash value corresponding thereto, respectively;
and

replacing each of the plurality of kernel bit values of the

kernel bit value set at the position of each of the plurality
of kernel bit values of the kernel bit value set with the
binary hash value corresponding thereto by the booting
program, respectively, and saving the kernel bit value set
with the hash value replaced as the operating system
kernel, to encrypt the operating system kernel, the
encrypted operating system kernel being not executable.

9. The encryption method applied on the operating system
kernel as claimed in claim 8, wherein each of the plurality of
codes stored in the definition table has a meaning selected

US 9,367,690 B2

17
from a group consisting of a selected bit number, a designated
bit, a frontward shift, a backward shift, and a shifted bit
number.

10. The encryption method on the operating system kernel
as claimed in claim 8, wherein the irreversible hash function
includes a secure hash algorithm (SHA) and a message-digest
algorithm (MD).

11. A decryption method applied on an operating system
kernel, being suitable for use on a device having a booting
program and the operating system kernel having been
encrypted correspondingly, comprising steps of:

extracting a plurality of codes having been recorded by the

booting program and a bit number of a binary hash value
having been recorded;

looking for at least one booting bit value set each having a

plurality of booting bit values from the booting program
in a storage space by the booting program according to
the selected plurality of codes and the bit number of the
binary hash value having been recorded, and looking for
at least one kernel bit value sets each having a plurality
of'kernel bit values from the operating system kernel in
a storage space by the booting program and a position of
each of the plurality of kernel bit values corresponding
thereto, the booting bit value sets corresponding to the
kernel bit value sets;

computing a reversible hash function to each of the plural-

ity of booting bit values of the booting bit value set and
one of the plurality of kernel bit values of the kernel bit

25

18

value set corresponding thereto by the booting program,
to obtain the binary hash value corresponding thereto,
respectively; and

deleting the kernel bit value set when each of the plurality

of kernel bit values of the kernel bit value set at the
position of each of the plurality of kernel bit values is
compared as being consistent with the binary hash value
corresponding thereto, to decrypt the operating system
kernel and execute the decrypted operating system ker-
nel.

12. The encryption method applied on the operating system
kernel as claimed in claim 11, wherein the irreversible hash
function includes a secure hash algorithm (SHA) and a mes-
sage-digest algorithm (MD).

13. The decryption method applied on the operating system
kernel as claimed in claim 11, further comprising a step of
first performing all the steps of the operating system decryp-
tion method and then performing an encryption process cor-
responding to the operating system kernel, when a re-encrypt
operating system kernel encryption condition is triggered or
one of the booting program and the operating system is
updated.

14. The encryption method applied on the operating system
kernel as claimed in claim 13, wherein the re-encrypt oper-
ating system kernel condition includes a multiple times boot-
ing failure condition, a time condition, and a command con-
dition.

